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ABSTRACT

~~~In an economy with finitely many agents, one renewable resource and an
/ infinite horizon , it is shown that there is exactly one maximal
allocation corresponding to given limiting shares of constmiption and
this allocation converges monotonically . Therefore, if there is no
discounting , at most one fair maximal program exists — that which gives

an equal amount to each individual in the limit. In this allocation,
envy is always finite. However , only in special cases is it envy—free .
This is in contrast to the case of finite economies where envy—free
and Pareto efficient allocations may not exist, or if they exist may
not be unique.
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INTRODUCTION

Mirinan and Levhari [3) consider an infinite horizon economy with a

single renewable resource. In [3], two countries fish in a common

ocean. The fish population reproduces in accordance with the usual

neoclassical production function. Each country has a utility function,

and there is a discount rate conmion to both. It is shown that the

Cournot—Nash non—cooperative duopoly equilibrium is in general not

Pareto optimal.

In this paper, the cooperative solution for the same model with a

finite number of agents is considered. We seek consumption programs

which are maximal and satisfy some fairness criterion. The main result

is that any maximal program is globally asymptotically stable in that

the value of capital stock (fish population) monotonically approaches

the “golden—rule” value x (that is, f’() 1/B where f is the

production function and B the discount rate) and the consumption of

th -

the i agent inonotonically approaches some fixed value e
~
c , where

e~ ~~ 0 , ~ 
— 1 (here ~ — f (~) — ~ is the “golden rule” con—

i—i
sumption, and n is the number of agents). Conversely there is exactly

one maximal program corresponding to any distribution of limiting con-

sumption. Fairness then consists in a reasonable choice of limiting

consumptions. If the agents are thought of as individuals, equal

limiting consumptions would seem appropriate. If they represent

countries, the limiting shares could be chosen proportional to popula-

tion. In this way, each individual could receive an equal limiting

share of consumption. The allocations characterized by these defini-

tions of fairness are not in general envy—free. However, in the un—

discounted case ($ — 1) it is shown that our def inition of fa irness
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is the only one which guarantees that envy will be f in i te , tha t is , the

utility an agent could receive from someone else ’s consumption stream

can exceed the utility he actually receives by at most a f inite amount.

The lack of an envy—free maximal allocation in the undiscounted

case should not be obj ectionable. In fact , according to Rawls , “a

rational individual does not suffer  from envy . He is not ready to

accept a loss for himself if only others have less as well ... . Or at

least this is true as long as the differences between himself and others

do not exceed certain limits.” ( [6] ,  Page 143.) Thus , we feel justif ied

in asserting that the maximal allocation giving equal limiting consump—

tions to each individual is the only conceivable fair allocation in the

case B — 1

The existence of a unique fair efficient allocation in our model is

in contrast to the case of finite economies . For example , any equilib-

rium for a pure exchange economy in which every agent is assigned an

equal share of the initial resources is Pareto optimal and envy—free .

(The resulting allocation is called income—fair in Pazner ( 4 ] . )  There

is , however, no guarantee that there is a unique allocation having these

properties. Moreover, in economies with production fair and efficient

allocations need not exist. (An example is given in Pazner and

Schmeidler (5].)

~~~
- —— -—- -- .

~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- --- — _ _ _ _ _ _ _ _
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I. DEFINITIONS AND NOTATION

There are n agents . Each agent i has a utility function for

consumption , u~ : (0 ,”) . u~ is assumed to be strictly increasing ,

strictly concave and twice continuously differentiable.  Denote

lini ui(c) and lu u~ (c) by ui (O) and u~~(O) respectively. These
c-’O

values need not be finite.  A discount factor B C (0 ,1] is con~~on to all

consumers.

The technology is described by a twice continuously differentiable

function f : (0 ,”) • (O ,a’) with f (O)  — 0 . We shall assume , for all x

that f ’( x )  > 0 and f” (x ) < 0 . We shall also assume that f ’ ( x )  > 1/B

for some x > 0 , and that f ( ~ ) — x for some x > 0 . It then follows

that there i s a  unique C ( O ,~ ) satisfying f ’G)  — 1/8 . Let

f() — x • No tice c > B f (x )  — x whenever x x

A p rogr~n is a sequence {(x
~
;Y
~
)} ,t with xt ~~, o ‘ ~~~~ 

— (
~ ‘ ...,

n
~ 0 for all and t . Let c~ — ~ c~ . A program

i—i

will be called feasible if , for some x0 
> 0 , c~ f ( x

~ _ i ) — x~ for

t ~~, 1 . We shall assume throughout that all programs star t from a fixed

> 0

A sequence {c~}~~.,1 
is said to oatoh up to {c~ } .,1 fo r agent i

if tim 
~~~ t~ l 

B t 1[u i(~~ ) — u~ (c~)~ ~~ 0 . A program {(~~ ;~~ ) }  is

maximal if it is feasible, and for no other program C(x ~~;~~~)}  does

{~} catch up to for each i . Notice that this definition

coincides with the usual defini t ion of Pareto opt imality when B < 1

A feasible program {(x
~
;Y
~
)} will be called envy—free if , fo r every

and i there exists T0 
> 0 such that 

t~1 
B
t_
~{U~ (ct) — u~ (ci)] ~~. o

whenever T~~~T

— ——-- -- — -~.- - —~~~— --— —.. .~•—.-—. —..~~~~~ .—--- -
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II. UNIQUENESS OF MAXIMAL PROGRAMS

The purpose of this section is to show that for every distribution

of limiting consumption there is at most one maximal program. To do

this we shall restrict attention to programs satisf ying a condition

necessary for maximality . First , properties of feasible programs are

deduced.

Let X a min (x ,x) . For cC(O , f (x ) — x )  define the function

~~ 
by g~(~) — f (y )  — c . Since — f (~ ) — c > f ( x )  — (f(~) —

and ~~~ — f (~ ) — c , there is a ~~C(~ ,x] satisfying 
~~~~ 

—

Furthermore, ~~(y) 
— y > 0 for yC(x ,~) and - y < 0 fo r

y > ~~

Lemma 2 1 :

The sequence defined by y
~ 

— , y0 — x0 converges

moaotonically to

Proof:

If Y~ C [ x ~ , then ~ ~~(Y~) ~~~~~~ 
> 

~~ 
X .

Therefore, since y0 ~ 
x

~ , ~ > y
0 implies y

~ 
increases to some

~ 
C(x5~

,
~~

) . Furthermore, ~ so . If y > a

similar argumen t shows that decreases to .

L e a  2 .2 :

Let — niax (x
0,

x) . For any feasible program {(x
~ ;1~

)}

x~ , c~ ~~, X
M 

for all i , and all t ~ 1

I ~~~- 
—-- — - --_ __________  _________--- - —. - — . .~— 

—
~~
.—-- — -- —
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Proof:

Let y
~ ~~~~~~ 

, y0 = x0 . By Lemma 2.1 , y
~ 

converges

monotonically to , and hence y~ ~ for t ~ 0 . Also , fo r any

feasible program x
~ ~ 

y~ for t ~ 0 . This follows by induction since

y0 and if x5 ~~y for some s , then x~~1 
a f(x5) —

~~, f(x5) ~~, f (y 5) y9~1 . Therefore, x~ ~ ~ x~ for t ~ 0 . Since

c
~ ~~, 

f(x~~1) by feasibility, c~ ~ 
c~ ~ 

f(x
~~i
) 
~ 

f (x~) ~ 
x~ and the

l e a  is established .~~

Lenina 2. 3:

Let ((x
~
;1
~
)} be a feasible program and let cC(O,f(x

~
) — x )

Suppose x~ ~~, ~ for all t ~~~ 1 . Then there exists an s such that

c > c .
5 —

Proof:

Let y0 — x
0 
, y~ — Pick T so that x . This

is possible by Leama 2.1. Suppose c~ ~ c for t ~ 1 . Since

— f(x
~~1
) — c

~ ~ f (x
~_i ) — c it follows , by induction, that

~~
, y
~ 

for t ~~ 0 . In particular , XT ~ ~~
, x , contradicting

x for t ~ 1 . Hence c > c fo r some s . I

i— .. - -
~~~~

---—. — —_____________________

—4
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The followi ng necessary condition for maximality makes it possible

to restrict attention to programs {(x
~~

y
~

)} fo r which him

exists.

Lemma 2.4~

Let ~x~
;y

~)}  be a maximal program. Then, for every i and s

(1) If c~ > 0 then u~~(c~ ) i u~~(c~~1) >

(2) If ~~~ > 0 then u ! (c~ ) /u~~(c
1
~1) ~~, 8f ’ ( x ) .

In par ticular , if c~ , c~~1 > 0 then u
~~(c~)/u~~(c~+i) 

=

Proof:

For fixed i and s define the function h~ by

dl 8~~~ [u~~(c~ — 8 ui(c~+i 
+ f (x  + 6) - f(x ))}

hi
( S) is the utility agent i receives from consumption of c~ — 6

in period s and c~~1 + f ( x5 + 6) — f(x
5) in period s + 1 . Suppose

c~ > 0 , then we claim h~ (O) ~ 0 . Otherwise h.(6) > h (O) for some

6C (O ,c~) . But then the program identical with

except that agent i consumes — 6 in period s and

c~41 + f(x5 + 6) — f (x 5) in period s + 1 would dominate

*Laxnu~a 2.4 makes it clear why a common discount rate is required .
Suppose that agent i had a discount rate for i 1,2. If

> B
~ 

, c~ > 0 for t > T , i — 1,2 , then Le=a 2.4 implies
- uj (c~~~) I u~~(c~~~) fo r all N ~. O . Hence

tim c~ — 0 and so no program satisfying conditions (1) and (2) of

Lemma 2.4 can give positive consumption to both agents in the limit.

— — . - . --.---- - - . —- -~~~~~~~-— — — - - —. .. .~—.--— - -  —.~~~~~~~ ---—--
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This contradicts the maximality of {(x
~ ;Y ~

) }  , so we may conclude

that c~ > 0 implies n~ (0) ~, 0 . Similarly , if c~~1 > 0 then

h~ (O) > C) . The lemma follows since h~ (O) —B ~~~ [u ~ (ci) — Bf ’ (x5)

uj (c’+l) l

The feasible program {(x
~

;y
~

)} will be called adnissible if it

satisfies conditions (1) and (2) above, for every i and t

Proposition 2.5:

Let {(x
~ ;Y~

)} be an admissible program . Then 
~~~ 

(x
~ ;Y~

)

exists and is equal to (x;0) or (x;y) where ~ — (
~~, ... ,,

and ~
i—i

To prove this proposition it is necessary to prove the following.

Leama 2 .6 :

Suppose ((x
~

;Y
~

)} is an admissible program .

(1) If for some s , x 1 ~~, x , ~ x then x
~ ~

for t~~, s

(2) If for some s , x~~1 ~ x~ , ~, x then x~ ~ x~~ 1
for t ‘ s

Thus , every admissible program is eventually monotone .

Proof:

It follows from Lemma 2.4 and the concavity of u~ that x ~
implies c5~1 ~ c for each i . Therefore, c +l ~ 

c~~1 >

i—l i—i

_ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _
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c~ — c , and so if x 1 ~ x5 then x~~1 — f (x ) — c~~1 < f ( x 1) —

c — x . Hence , if x > x and x > x fo r so me s , then
5 s s—1 5 s

~ x 5 ~ x 5~ 1 . Repeated applications of those reasoning establish (1).

A symmet ric argument yields (2) . It follows that there exists an s

such that either x , ~ x for all t > s or x~ ~~. x for all t > s

Thus is monotone for t ~~, s .1

Proof of Proposition 2.5:

By Lemma 2.6 , {(x
~~;’r~

)} is eventually monotone , therefore , by

Lemma 2.2 , lim (x~ ;Y~ ) exists.

Let u r n  G ;~~
) — (2;~ ) . Suppose 2 . Then we claim ~ 0t

Otherwise tim c~ — > 0 for some i . Pick T so that 8f ’(x
~

)

~ 1 — 6 for t ~ T and some 6 ‘ 0 . Then 
4 ~ 4~~~~ 

> for N ~~, 0

and , by Lemma 2.4 , uj(4)/u~(4÷~) — (Bf’(x.~) ]  ... ( $ f ’( x T~~~ l) ]

< (1 — 6) N Thus u r n  uj (c~)/u~ (c~~.N) 0 . But this contradicts

u
~ (4) /u~~(c~~.N) ~.

u
~
(x
M

)/u
~
(a
~
) > 0 . Hence ~ — 0 whenever 2 >  x

Therefore , 0 — tim c~ — lim ( f ( x
~~ 1

) — x
~

] — f( it ) — 2 and so 2 —
To complete the proof it suffices to show 2 < x is impossible.

In order to get a contradiction, assume 2 c x . Let q be chosen

so that Bf ’ (x
~

) ~, 1 — 6 for all t ~ q and some 6 > 0 . If

x~ ~ ~ for t ~ 0 then is non—decreasing and , by L e a  2.3 ,

there exists c > 0 and a r such that c > c , and so c > cr

for t ~, r . On the other hand , if x~ > ~ for some t , then there

exists $ such that x
5 1  

> ~ x5 and x5 ~ 
for t ~ s

This is a consequence of Lemma 2 .6 .  In this case , for t ~ s

— f(x5_1) — x~ ~ f (~) — . Now , let T — max (q, r ,s) 
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and t — mm (~ ,c)/n . Then , fo r some j , c~ > c whenever t ~~ T

Hence x~ ~ c~ for all i and t implies that > u~ (r ) /u ~ (XM)

u~ (4)/ui (c~+N) ( B f ’ ( x T ) ]  ... (Bf’(xT+N_l)] ~ (1 + 6) N fo r all

N ~ ,, 0 . This is impossible , so 2 < x is ruled out . The observation

that if lim x
~ 

x then u r n  c~ — f (~ ) — ~ completes the proof .I
t-+dl

Proposition 2.7:

Suppose {(x
~ ;Y~

)} is maximal . Then u r n

Proof:

Suppose the proposition is false. Let { (x
~ ;y ~

)}  be a maximal

program such that lirn x~ # x . By Proposition 2.5 tim x~ ~ . Choose
t•dl

T so that x~ ~~x , — x~~ < ~/4 , and 
~ 

— f(x
~)I 

< ~/4 whenever

t T . It follows that c
~ 

— f (x
~~i

) — x~ ~ ~
f(x

~~j
) — + — x~~ < c/2

Consider the program {(t~ ;j ~~)} where

— (x~;Y~) if t < T

x
~~~

i if t~~~T and

f (xT l ) — ~ if t —

r t i f t > T

Since c~ > ct for t > T we can choose (~~‘ ~~ ‘~~~
) such that

Z c~ — c~ and c~ ‘ c~ for every i . Therefore {(2~;~~)} dominatesi—I

contradicting maxirnality.I

H. . i. 
____— ._ _ _ _ _ _  

_ _ _ _ _
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Proposition 2.8:

Suppose ( (x
~

;y
~

)} is an admissible program such that u r n  x~ —

Then {(x
~ ;Y~

)} is a monotone sequence , increasing if x0 
< , constant

if x
0 

— x , and decreasing if x0 
> x

Proof:

The proposition follows inmiediately from Lemma 2.6 and Proposition

2 .7 .U

Theorem 2.9:

Given 8 — (8k , ..., 8 )  such that > 0 for each i , ~ e~ — 1
i—i

and x
0 ‘ 

0 , there is at most one maximal program {(x
~
n’
~
)} starting

from x
0 

such that lim —

Proof:

Fix 8 and let M1~(8) M1~ — uj(ei~
)/u (e

~~
) for 1 ~ i I ~~. n

Clearly 0 < c and M
il
M
ik

Before we can prove the theorem, two preliminary results are needed.

L~~~a 2.10:

Let ((x
~
;y
~

)} be an admissible program with lim (x
~
;Y
~
) —

Then

8f ’(x
~
) ~~~ (c~)/u~ (c~~J

(*)
for all j  and t , with equality whenever c~ > 0

and

uj(c~)/u~ (ci) ~~~~ whenever c~ > 0 . (*5)



1].

Proof:

Unless 0 — c~ — c~41 , (*) follows from Proposition 2.8 and

Lemma 2.4. If 0 a c~ — c~~1 then x~ ~ x and so Bf ’(x
~
) ~ 1 —

u~ ( O) /u ~ (O) . Therefore, if c~ > 0 , uj(c~)/u~ (c~+N) 
-

(8f’(x
~
)] ... (Bf’(xt+N_l)] ~~u~ (c~)/u~ ~~~~~~~~~~~ fo r all N ~ 1 . Hence ,

provided c~ > 0 , u~ (c~ )/u~ (~~~~) ~ tim u~ (c~+N)/u ~ t+N ) M~1 
.1

Next we deduce a technical result concerning solutions to (**) .

Lemma 2.11:

i B i aSuppose (c , ..., c ) and Cc , ..., ~ ) satisfy (*5) . If

c1 > for some j  , then c~ > whenever > 0

Proof:

Suppose c1 > and > 0 . We have u~ (c
1) /u~(c

k) 
~

and ~~~~~~~~~~~ >M .~ hence u~(c1)/u~(c
k) ~.uj(~

i)/u~(~
1’) and so

1. > u~(c
1)/u~(~

1) ~~~~(c
k)/u~t (~~) and thus > ~k •

To prove the theorem suppose {(x
~
;
~r~
)} and {(2

~
;?
~
)} are two

different programs such that tim (x
~
;f
~
) — tim (*

~
;?
~
) (~;e~)

Then we can find s ~ 1 such that (x
~

;Y
~
) — (2

~
;?
~

) for t ~, $ , and

~ 
?s+l Without loss of generality, assume 

~ 

c~~1 > 

~

Then we claim that for all t ‘ s , x~ < and c~ > whenever

c~ > 0 . Since ~ 
> c~~l , x 41 f(x ) — 

~ 

c~41 < f(x ) —

! 
~~~~ ~s+l • But, by Lemma 2.10, 

~3+1 
and 

~s+l satisfy (5*) .
i—l
It follows from Lemma 2.11 that c~~1 > whenever > 0

— ~~~~~~~~~
— -..- - - . - .

~~~~~
---_
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This establishes the claim when t s + 1 . Now suppose the claim

is true for some T > $ . By (*) and the assumption that < 2
~i. 

, we

have ~~~~~~~~ 3f ’(x~) > 8
~
’
~~T~ 

~~~~~~~~~~~~~~~~~~~~~~~~ provided

4 
> 0 . Hence, since 4 ~ 4 4 > ~ implies >

Moreover, by Proposition 2.8 , 
4 

> 0 for some j  , so 
4+~ 

>

and therefore, since and both must satisfy (**) it follows

from Lemma 2.11 that c~~1 > whenever 4~~ 
> 0 . Hence,

~~ 4+~ 
> 

~ ~T+l and • f(x.~) - ~ 4.,~ 
< - 

~ ~T+l —
i—u i—i i—i i—i

~T+l . The claim then follows by induction.

Now select T so that for t ~ T , ‘ 0 . This is possible

since Urn > 0 . From the claim, c~ ‘ for t ~ T

Therefore, uj(c N)/uj~~~÷N) 
— uj (4)/uj .~~) 8f ’ T

)/Bf (xT~~

f or N ~~1 . But x~ < for t ~, T so

i. > u~(4) iu~(4) ~. 
u~ (c .N)/uj(4.~~) 

for all N ~.1 . Thus

1 > tim uj (4÷~)Iuj(4.,.~) u~(e1~
)/u~ (8

1~
) — 1 . This is impossible,

and the contradiction establishes the theorem.l

~~~~~~~~~~~~~
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III. EXISTENCE OF MAXIMAL PROGRAMS

The purpose of this section is to prove that maximal programs

exist.

Theorem 3.1:

Let 8 (eu, .. . ,  8) with 8~ > 0 , 
~ 

8~ 1 be given. Then
i—i

there exists a maximal program {(
~~~;~~~)} such that u r n  — 8 ~

It turns out that this theorem is an easy consequence of the

existence of maximal programs in economies with a single utility

maximizing agent. Define the function U by U(c) — max 
~ 

ui(c )I
i—u

uj(8i~
) subject to c~ ~ 0 Z C

j 
c . Clearly, 13 is continuous

i—i

and strictly concave. Also, since each u~ is strictly concave, every

c ~, 0 determines a unique vector y(c) — (c1, . . . ,  c )  such that

a a -c~ ~ 0 , ~ c~ — c and 13(c) — ~ u~ (c~) / u ~ (8~c) . We shall call
i—i i—u

{(x
~
,c
~
)} a feasible sequence (from x

0
) if x~ ~ 0 , c~ ~, 0 and

— f(x~_1) — x~ for all t ~ 1 . Thus, associated with every feasible

sequence {(x
~
;ct)} is a feasible program {(x

~
;Y
~
)} where — y(c~)

Theorem 3.]. is a consequence of the following result.

Proposition 3.2:

Given any x0 
> 0 there is a unique feasible sequence {(x

~
;c
~
)}

T
such that for any other feasible sequence him inf ~ 8

t
~~ (U(c

t
) —

T~~ t l
< 0 .

H ~ - - _ _
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Proposition 3.2 is well known in the theory of optimal growth.

Proofs can be found ( for  the case ~ — 1) , in more general settings, in

Brock (1] or Gale ( 2 ] .  Since only a weak version of their theorem is

needed , an independent proof of Proposition 3.2 is given in the

appendix.

To prove Theorem 3.1, let y(~~) for t ~~ 1 . Then Proposition

3.2 implies that {(x
~
;
~~
)} is maximal. For suppose {(x

~
;y
~
)} is a

feasible program such that lim inf 
t~l 

8t_l[~ (ct) — ~, o for

each i . Then

T
him inf ~ 8

t l (U(c
t
) — U(c

~
) ]

T-’~ t—l

h i m  
~~~ ~~~ 

u~ (O~~ ) [u~ ~~~) - u~(~~~ ~

i~1. 
~~ 

~ L ~~~~~~~ 
[u~ (ct)  - 

~~. 0

But , by Proposition 3.2 , this can only happen if {(x
~

;y
~

) } —

is maximal.

It remains to show that him — e C . Because {(x
~
ry.
~
)} is

maximal, it follows from Proposition 2.5 that him exists. Denote

this limit by (~~~ , . . .,  
~~~

) . But , by Propositions 2.5 and 2.7 ,
a a u~~(c~ )

~ and so (~~~~, . . .,  ~ ) solve : Maximize 
~ u ’~ 8 -~ subject

i—h a i—h i’ i ’

to — , c~ ~ 0 . Therefore , uj(~i)/uj(ej~
) ~~.

a u ( s )
whenever > 0 . Thus 

~ 
c and 

u’(~~) ~ 
M~ whenever

i—h j i
> 0 and we must have — 8~ by Lemma 2.11. It follows that

— -
~~~~~~

--- -- - _ _ _ _
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him — 8 ~ , completing the proof.I

Combined with Theorem 2.9, Theorem 3.1 guarantees the existence of a

unique maximal program associated with every distribution of limiting con—

sumptions.
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IV. FAIR ALLOCATIONS

The results of Sections II and III show that there is a unique

maximal program corresponding to every limiting distribution of consumption.

This section discusses the properties of maximal programs , with emphasis on

that which gives equal. shares to each agent in the limit. Throughout this

part we assume 8 — 1 .

We begin with a characterization valid for all maximal programs.

Proposition 4.1:

Let {(x
~
;y
~)} be a feasible program starting from x

0 
. Then, for

T
ail T > 0 , 

~ 
(c
~ 

— 
~~
) < f (x

0)t—l

Proof:

Since c~ — f(x
~.i
) — x~ and f(x) — x < ~ for all x ~ 0 we

T 
— 

T 
-have ~ 

(c~ — c) — 
~ 

( (f(x
~
) — x

~
) — ci + f (x0) — f(xT) < f(x0) .1t—h t—l

Lemma 4.2:

For every maximal program {(~~~~;~~~ ) }  , 
~ 

— converges.
t—l

Proof:

If x
0 

< x Lemma 2.7 guarantees that x~ C (x0,i] for t ~, 1

Hence, by Lemma 2.3, there is a T such that CT 
> 0 and so there

exists c > 0 and j  such that > c for t ~~ T . It follows from

Lemma 2.4 that u~(c)/u (x~) ~~~~~~~~~~~~~~~ f’ (~~) f’( ,~~]~)

for all N ~, 0 . Therefore, u
~
(c)/u

~
(xM) ~ 

(xe) and so

(~~~ ) < — . It is wel]. known that this implies 
~ 

( f ’ ( ~~ ) — 1.1
t—l

hence , since f’(~) 1 we have > 

~~~~~ 
~~~~~~~~ 

— f ’~~~ fl —

_________ _ _ _ _  

-dl-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — . 
LA
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~~~ 

( — ~)f” (~~~
) fo r some C(~~~~~~

] . Therefore, if m

> 0 — > ~ 
— ~)f” (~~~

) > m  
~ 

(~ 
— . A similar

t—l t— l
argument establishes the lemma when x0 

> X

Theorem 4.3:

For any maximal pr ogram {( ~~~;~~~
)}  , —

tdll

Proof:

If x
0 ~ ~ 

then by Proposition 2.8 c~ ~ c for t ~ 1 and the

result follows from Proposition 4.1.

If x
0 

< x , then c > for t > 1 and

— — ;~) — 

~~~~~ 
—

dl — 

~~~~~~~~~~~~~~~~~~~ 

+ — i
t—]? — —

— s—i? f’ (x0) + 
— 

~ —~? — —

— 
~~_1

)(f’(x
o
) — 1) + —

Hence ~ (~ — ~ ) ~ (f’(x ) — 1) ~ — ~) + ~ 
— 

— 
)

t— ~. t—l t—1
This completes the proof since ~ (~ — ~) < by Lemma 4.2 and

t—l

~ 
(x
~~

_ x
~_ i

) . —
~~o

.I 
-

t— 1

Together with Proposition 4.1, Theorem 4.3 says that no program can

yield infinitely more consumption than a maximal program. Corollary 4.4

makes an analogous statement about utilities.

Corollary 4.4:

Suppose 
~~~~~~~~~~~~ 

is a maximal program. If 
~~~ 

— ~ 8 for

some 5 8) , ‘ 0 for each i and 
~ 

e~ 1 , then
i—u 4

! I C~ — — and Iuj(8i~
) — — .

t l

- -
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Proof:

By Proposition 2.8, ~~ 
— ~~~ ~~ l~~ 

— ci for all i and t ~~ 1

So 
t~ h ~~ — 0~~i < — by Theorem 4.2.  Also iu j (~~) — u1(8~a) 1 —

u
~

(
~

)( I
~ 

— 8~~I] ~.Mi ( I ~ t — 
~~~~ where — max [uj (~~) uj (~j~)]

The corollary now follows from another application of Theorem 4.2.

Corollary 4.5: -

If — 1/n for each i then ~ 
— and ~

t—1

iu~(~~) — u~ (c~)i 
< for every i and j

Proof:

Since Ic~ — ~~ tc~ 
— c/nt + Ic~ — c/n( , that ~ —

t—l

follows from Theorem 4.3. Also , if M~ — m.ax[uj(~~), u~

Cc/n)] then 

~ 
Iu ~ (~~) 

— U~~(a~ )i £M~ 
~~~~~ 

— C
~~I < by the mean

value theorem.

Corollary 4.5 guarantees that the maximal program giving each agent

limiting consumption c/n is almost envy—free , in that each individual

receives - up to a finite amount - as much utility from his consumption

sequence as from that of anyone else. Clearly no other maximal allocation

will have this property, with any other limiting consumptions there would

be a T and an ~ > 0 such that > c/n + ~ > c/n — C > C~ for some

i and j and all t ~~T . Agent j would then prefer i’s consumption

to his own by an infinite amount.

Unless the agents have identical utility functions, no maximal

allocation is envy—free. In fact, the following theorem implies that

in many circumstances there exists i and j  such that for

all t .  

—-——------ -
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Theorem 4.6:

Suppose 
~~~~~~~~~ 

is a maximal program and u r n  y~ c(l/n , . . .,  1/n)-

If, for some i and j , — gou . where g is twice continuously

differentiable , increasing and concave then

1) If x
0 

< ~ then c~ > whenever > 0 .

2) If x0 > ~ then for all t ~ 1

Proof:

Suppose x
0 

< . Then by Proposition 2.8 c~ , c~ < c/n for all

t ~ 1 . If, for some s , > 0 and then u~(a/n)/u~(c/n)

by Lemma 2.10 but u~(~/n)/u~(~ /n) —

g’ (Uj (a/n) )u~ (s/n) h g ’ (U
j 
(s/n)) and u~ (~~ ) /u~ (ci) £ u~ (~~

) I~’ (~~
)

— l/g’(u~(~/n)). Hence S’(uj(c~)) ~,8’(u j(~/n)) and thus ~~

by the concavity of g . This contradiction establishes (1). (2) follows

from a similar argument and the observation that if x0 > x then c~ > 0

for all t~~~1

It is easy to see that unless u~ — auj + b for some a > 0 and

— gouj for some twice continuously differentiable increasing function

g , where either g or g 1 is strictly concave over some interval.

Therefor e, provided two agents have different preferences, there is a

production function and an initial endowment that guarantees in the

maximal program with equal limiting consumptions, an agent consumes

more in every period than some other agent.

_ _ _ 
_  I_ _ _ _  . — ~~~--—. ~~~~~~- - -~ __ _ _
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APPENDIX

In this appendix we give a proof of Proposition 3.1. for the case

S — 1 . When B < 1 , the proposition follows easily f rom the fact that

~ 8
t•~L~•~~ ~ converges for all feasible sequences.

t—1

Let ~ — ~ ~~~~~~~~~~~~~~~ We need the following results:
i—i

Al. Associated with any feasible sequence {(,c
~
;c
~
)} is a sequence

of non—negative numbers (6~ } such that

I — 
I

~ 
(U(c~ ) — U] — f(x

0
) — f(x1

) —

t— l t—l
A2. There exists a feasible sequence {(x

~
;c
~
)} such that

T
Z (U(c

~
) — ii] ~ M for some constant N and T ~ 1

tal

For A]. let {(x
~ ;c~

)} be a feasible sequence and let

U(c
~

) dl 

~ 
u~ (c~)Iu~(8~c) with c~ ~,O , ~ 

c~ — c~ . It follows
i—l i—i.

from the concavity of the u~ and the mean value theorem that

u
~ (c~) 

_ u
i(8 i~

) £u ~ (8~~ ) ( c~ — 8~~] for every i and t . Hence, since

n 1
U(c

~
) — — ~ u~(O~~) (u i ~c~~

_ u~ (8 i~
)] , U (c~ ) — U £ ct — c . Put

i—I
— (c~ — ~~) — (U(c

~
) — U) + (~~ — (f (x

~
) — x

e
) ]  . Then , since B £~~

and c 
~, 

f(x
~
) — ‘ 6t ~~ 0 . Also, U(c

~
) — U — f(x~_t

) — f (x
~
) —

I T
and so 

~ 
[U(c

~
) — U] — f(x0

) — f(x
T
) — as desired .

t—l
To show A2 pick C C(O,f(x0) — x

0
) and let y1 f(x 0) — c

y~ — — c for t ~~ 2 . It follows from Lemma 2.1 that

y~ ~ x for some s • Let

for t 1, . . . ,  s
(x
~
;c
~
) ~(i;f(x5) — ~~) for t — s + 1

(~~ ;~~) for t ’  s + 1
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T
Then {(x ;c ) }  is a feasible sequence and ~ 

[U( c
~

) — U] >
t t

5

~ [U(c) — U] — s[U(c) — U] and this yields A2.
t—1

We shall call the feasible sequence {(x
~

;c
~

)}  good if there
I

exists M such that ~ 
(U(c

~
) — U] > N for T ~ 1 . Notice that

t—l
1 implies 

~ 
converges for all good sequences. Thus llm —

t—l
0 and , since 6~ c — (f (x

~
) — x

~
) , him (x

~
;ct) — (~~ ;~~) for all

t.+—
good sequences ((x

~
;c
~

)}

Now let ~ — inf ~ 
ó
~
:6
~ 

corresponds to a good sequence~ . By
t—1

A2 , ~ is finite. Furthermore , there is a feasible sequence

with 
~ 

— 
~ 

. To see this take , for each N , a good sequence
t—].

with ~ + 1/N . Since (x~;c~) are bounded uniformly
t—l

for all t and N (Leama 2.2) , there exists a subsequence {N~ } such

that h a  (x~
i ;c~i) exist: for each t . Call this limit

It is easy to see that 
~ 

— ~ and that {(x~;~~)} is a feasible
t—l

sequence.

Let {(x
~
;c
~
)} be a feasible sequence . Then , by Al ,

I I

~ (U (C~) — U(
~~

)] 
~ ~~~~~ 

— f (X .r ) l  + ! (~~~ 
— . Since

t~1 t—l I
him f(x

~
) f(~) whenever , we have h a  m t  

~ 
(U(c

~
) —

t”— t—l T-~~ t— l
U(~~)J~~,0 . T

To complete th. proof we need to show that lim inf 
~ 

[U(c
~

) —

T~~~t 1

< 0 for any feasible sequence ((x
~

;c
~
)} different from

But this follows immediately from the strict concavity of

U and f.U


